
NI-FBUS™

Function Block Shell
Reference Manual

NI-FBUS Function Block Shell Reference Manual
January 1998 Edition
Part Number 321016C-01
© Copyright 1996, 1998 National Instruments Corporation. All rights reserved.

36,

1,
support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248
Fax: (512) 794-5678

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 33
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30,
Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 5
Taiwan 02 377 1200, United Kingdom 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

m the
air or
or.

ing
enced
at do
ty
 free.

tside
pping

y
serves
. The
ble for

e.
tional
arranty
 follow
ct;
ties,

nical,
,

ability

on the
g
itional
s injury
uments
ed to
Warranty
The Fieldbus hardware is warranted against defects in materials and workmanship for a period of one year fro
date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, rep
replace equipment that proves to be defective during the warranty period. This warranty includes parts and lab

The media on which you receive National Instruments software are warranted not to fail to execute programm
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media th
not execute programming instructions if National Instruments receives notice of such defects during the warran
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefull
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL
OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligenc
Any action against National Instruments must be brought within one year after the cause of action accrues. Na
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The w
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the produ
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third par
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part
without the prior written consent of National Instruments Corporation.

Trademarks
NI-FBUS™ is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v NI-FBUS Function
Contents
i
i

1

-1
-2
-3
-3
4

-1
-1
1
2
2
3

About This Manual
How to Use the Manual Set .. ix
Organization of This Manual .. ix
Conventions Used in This Manual.. x
Related Documentation... x
Customer Communication .. x

Chapter 1
Function Block Shell Overview

Chapter 2
Functional Overview

Application Program Structure ...2-
Registration...2-1
Ownership of Data ..2

User-Owned Parameters...2
Shell-Owned Parameters ..2

Registering Callback Functions ..2
Callbacks for Parameter Access ...2-
Callback for Function Block Execution ...2-5
Callbacks for Alert Notification ...2-5

Chapter 3
Registration Functions

Registration Process..3
Constructing the Device Template ...3

File Format ...3-
VFD ..3-
User Types..3-
Blocks ...3-

Data Type...3-4
Usage..3-5
Storage ...3-5
Block Shell Reference Manual

Contents

6
7
7
-8
-8
-9
-11
-13

-1
-2

5
8

1
-
-3
5-4
-6
-7
9

-1
Owner .. 3-6
Initial Value ... 3-6

Trends... 3-
Variable Lists ... 3-

Using the Code Generation Utility ... 3-
Calling Registration Functions ... 3
Registration Functions.. 3
shRegisCallback ... 3
shRegisParamPtr... 3
shStartExecLoop... 3

Chapter 4
Callback Functions

Callback Functions ... 4
CB_EXEC .. 4
CB_NOTIFY_READ ... 4-3
CB_NOTIFY_WRITE ... 4-4
CB_READ.. 4-
CB_WRITE .. 4-

Chapter 5
Utility Functions

Utility Functions... 5-
shGetTime .. 52
shSignalBlockSem.. 5
shReadParam ..
shWaitBlockSem .. 5
shWriteParam ... 5
shWriteNVM .. 5-

Chapter 6
Alarm Functions

Alarm Functions ... 6
CB_ALARM_ACK.. 6-2
CB_ACK_EVENTNOTIFY... 6-3
shAlertNotify.. 6-4
shClearAlert.. 6-6
NI-FBUS Function Block Shell Reference Manual vi © National Instruments Corporation

Contents

-1

-1

-3
-5
-6
-7

-11
-

4

13
Chapter 7
Miscellaneous Functions

Miscellaneous Functions...7
shInitShell ...7-2
userStart ..7-4

Chapter 8
Serial Functions

Serial Functions ..8
Overview of Serial Functions...8-1

nihOpenDevice ...8
nihCloseDevice...8
nihDefineSequence ...8
nihSendCommand...8
nihGetData ..8-9
nihPutData ..8-10
nihCancelSequence...8
nihSetParam..812

Appendix A
Customer Communication

Glossary

Tables
Table 3-1. Data Type Names Used in Template Registration.................................3-

Table 8-1. Constants Available for the Option Parameter8-
© National Instruments Corporation vii NI-FBUS Function Block Shell Reference Manual

© National Instruments Corporation ix NI-FBUS Function B
About
This

Manual
ts
op

he

e.

 of
This manual describes the main features of the National Instrumen
NI-FBUS Function Block Shell and describes how to use it to devel
Function Block Applications.

How to Use the Manual Set
Use the Getting Started with Fieldbus manual to install and configure
your Fieldbus hardware, the Fieldbus Stack Interface Library, and t
NI-FBUS Function Block Shell software.

Use the MC68331-Based Fieldbus Round Card User Manual or Intel
80188EB-Based Fieldbus Round Card User Manual to install your
Fieldbus Round Card.

Use this NI-FBUS Function Block Shell Reference Manual to learn about
writing Function Block server applications that interface to your
AT-FBUS or are embedded in the Fieldbus Round Card.

Use the NI-FBUS Monitor User Manual to learn to use the interactive
NI-FBUS Monitor utility with your Fieldbus hardware.

Use the NI-FBUS Communications Manager User Manual to learn to
use the interactive Fieldbus dialog system with your Fieldbus hardwar

Use the NI-FBUS Configurator User Manual to learn to use the
NI-FBUS Configurator to configure your Fieldbus network.

Organization of This Manual
This manual is organized as follows:

• Chapter 1, Function Block Shell Overview, gives an introduction to
the Function Block Shell.

• Chapter 2, Functional Overview, introduces some of the key
concepts of the Function Block Shell and provides an overview
some of the functional components of the interface.
lock Shell Reference Manual

About This Manual

f

our

s

ple,

ets
r

ou

ialog
s,
• Chapter 3, Registration Functions, describes the registration
process and the associated functions.

• Chapter 4, Callback Functions, describes the callback functions o
the Function Block Shell.

• Chapter 5, Utility Functions, describes the utility functions of the
Function Block Shell.

• Chapter 6, Alarm Functions, describes the alarm functions of the
Function Block Shell.

• Chapter 7, Miscellaneous Functions, describes miscellaneous
functions of the Function Block Shell.

• Chapter 8, Serial Functions, describes serial functions of the
Function Block Shell.

• Appendix A, Customer Communication, contains forms you can
use to request help from National Instruments or to comment on
products and manuals.

• The Glossary contains an alphabetical list and description of term
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

Conventions Used in This Manual
The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard (for exam
<Esc>).

- A hyphen between two or more key names enclosed in angle brack
denotes that you should simultaneously press the named keys—fo
example, <Control-Alt-Delete>.

This icon to the left of bold italicized text denotes a note, which alerts y
to important information.

bold Bold text denotes the names of menus, menu items, parameters, d
box, dialog box buttons or options, icons, windows, Windows 95 tab
or LEDs.

bold italic Bold italic text denotes an note, caution, or warning.
NI-FBUS Function Block Shell Reference Manual x © National Instruments Corporation

About This Manual

o a

r

k
vice
 and

ul

cts
th

nt
italic Italic text denotes emphasis, a cross reference, or an introduction t
key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows 3.x.

italic monospace Italic text in this font denotes that you must supply the appropriate
words or values in the place of these items.

monospace Text in this font denotes text or characters that should literally ente
from the keyboard, sections of code, programming examples, and
syntax examples. This font is also used for the proper names of dis
drives, paths, directories, programs, subprograms, subroutines, de
names, functions, operations, variables, filenames and extensions,
for statements and comments taken from programs.

Related Documentation
The following document contains information that you may find helpf
as you read this manual:

• Fieldbus Foundation Specification, which includes the following
items:

– Fieldbus Foundation System Management Services

– Function Block Application Process, Part 1

– Function Block Application Process, Part 2

Customer Communication
National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop wi
our products, and we want to help if you have problems with them.
To make it easy for you to contact us, this manual contains comme
and configuration forms for you to complete. These forms are in
Appendix A, Customer Communication, at the end of this manual.
© National Instruments Corporation xi NI-FBUS Function Block Shell Reference Manual

© National Instruments Corporation 1-1 NI-FBUS Function B
Chapter

1
Function Block
Shell Overview
nal

ol.

ion

ed

f
n

n
e

t
This chapter gives an introduction to the Function Block Shell.

The National Instruments NI-FBUS Function Block Shell is an
interface between a Function Block Shell application and the Natio
Instruments Fieldbus Foundation Communication Protocol Stack. It
requires minimal knowledge of the Fieldbus Communication protoc

This section details the main features of the National Instruments
Function Block Shell, which greatly eases the development of Funct
Block Applications.

• The Function Block Shell constructs and maintains the Object
Dictionary (OD). Therefore, you do not have to construct or
maintain the OD. The Function Block Shell constructs the OD
during registration, when you inform the Function Block Shell
about all the VFDs, Blocks, and parameters in the application.
After the OD is constructed, the Function Block Shell
automatically responds to GetOD requests from the Fieldbus
without your intervention.

• The Function Block Shell maintains the linkage objects as defin
in the Function Block Application Process, Parts 1 and 2. The
Function Block Shell also establishes all types of connections,
including trend and event connections (also known as QUU, or
Queued User-triggered Unidirectional, connections) and
publisher/subscriber connections. The Function Block Shell
automatically responds to connection requests from a remote
device.

• The Function Block Shell handles the communication aspects o
the alert-processing state machine. At your request, the Functio
Block Shell sends an alert notification message and waits for a
alert confirmation. It can repeat the notification, confirm when th
notification is received, and alert you when an acknowledgmen
arrives.

• The Function Block Shell maintains and reports trends. The
existence of trend objects can be entirely transparent once the
initial registration process is complete. You specify the trend
lock Shell Reference Manual

Chapter 1 Function Block Shell Overview

cts
d

aps
ve

on
ge.
information, and the Function Block Shell creates the trend obje
and samples the trend. Then, it reports the trend when the tren
buffer is full, or when a host device requests it.

• The Function Block Shell can handle FMS Read/Write requests
without involving you. However, you have the option to be
involved in read/write requests if necessary.

• The Function Block Shell snaps (reads from the communications
stack) input parameters before function block execution, and sn
output parameters at the end of block execution. You do not ha
to make calls to the communications stack to perform these
functions.

• The Function Block Shell is not dependent on the type of Functi
Block; it accommodates new blocks or parameters without chan
NI-FBUS Function Block Shell Reference Manual 1-2 © National Instruments Corporation

© National Instruments Corporation 2-1 NI-FBUS Function B
Chapter

2
Functional Overview
ock
nts

e

g

e

ers

e

,

ere
er
This chapter introduces some of the key concepts of the Function Bl
Shell and provides an overview of some of the functional compone
of the interface.

Application Program Structure
The userStart function is the starting point of your application. This
function is invoked automatically after the kernel boots up. In the
userStart function, you can call the registration function to set up th
application, and then call shInitShell to initialize the Function Block
Shell. After this, the Function Block Shell remains in a loop, listenin
to the requests from the communication stack and invoking your
callback functions to service the requests when necessary.

Registration
Registration is the process by which a function block application
informs the Function Block Shell of the characteristics of the
application. For each VFD (Virtual Field Device), you must supply th
following information to the Function Block Shell: user-defined data
types, physical blocks, transducer blocks, function blocks, paramet
in the blocks, and callback functions. In addition, you must specify
some other general configuration information. Registration must tak
place before you can interact with the Function Block Shell or the
Fieldbus.

The registration process is described in the next chapter, Chapter 3
Registration Functions.

Ownership of Data
The Function Block Shell constructs and owns the OD. However, th
are several options for the ownership of the function block paramet
data. Each physical block, function block, and transducer block
lock Shell Reference Manual

Chapter 2 Functional Overview

y.
ed
pe
he
s if it
 the

d
ers.

not
ing

hell
ad or
s

of

er

s are
ta.
e
parameter has an ownership attribute. The ownership attribute is
required; it is not network visible, so it does not affect interoperabilit
The Function Block Shell receives the type of ownership (user-own
or Shell-owned) for every block parameter during registration. The ty
of ownership determines whether the Function Block Shell or you (t
user) have direct access to data. The owner can access the data a
were any other variable in the program. The non-owner can access
data by function call (user to Shell) or by callback (Shell to user).

User-owned parameters can be either USER_ALONE or USER_PTR,
and Shell-owned parameters can be either SHELL_ALONE or
SHELL_NOTIFY . National Instruments recommends the use of
USER_PTR ownership because it has less overhead than other
ownership types. To access parameters of SHELL_ALONE and
SHELL_NOTIFY ownerships, you must call shReadParam and
shWriteParam functions. These calls can create significant overhea
for a function block algorithm that needs to access a lot of paramet
USER_PTR ownership is easier to work with than USER_ALONE
ownership because it requires less work in callback functions.

User-Owned Parameters
If the user owns a parameter, the Function Block Shell may or may
have direct access (by pointer) to a user-owned parameter, depend
on your choice.

• USER_ALONE: In USER_ALONE ownership, you own the
parameter data. The Function Block Shell does not have direct
access (via pointer) to the data. Whenever the Function Block S
needs access to the parameter to respond to a remote FMS Re
FMS Write request, it executes one of the two callback function
you registered previously. To read a value, the Function Block
Shell executes the callback function of type CB_READ. To write a
value, the Function Block Shell executes the callback function
type CB_WRITE.

• USER_PTR: In USER_PTR ownership, you own the data, and
you inform the Function Block Shell of the pointer to the paramet
in the function block registration process. The Function Block
Shell has direct access to the data. In this scheme, semaphore
created to ensure mutual exclusion for accessing parameter da
One semaphore is created for each function block, including th
resource block and the transducer block. In your application
program, before you can access a parameter with USER_PTR
ownership, you must use the shWaitBlockSem function to acquire
NI-FBUS Function Block Shell Reference Manual 2-2 © National Instruments Corporation

Chapter 2 Functional Overview

ter

n

ter)

e

rite

be

L.

e
ase,
le

e
the semaphore of the block to which the parameter belongs. Af
you access the parameter, you must use shSignalBlockSem to
release the semaphore.

On a remote read or write request of parameters with this type
of ownership, the Function Block Shell asks your permission to
read or write the data. The Function Block Shell asks permissio
by executing user-registered callback functions of type
CB_NOTIFY_READ or CB_NOTIFY_WRITE.

Shell-Owned Parameters
If the Shell owns a parameter, you do not have direct access (by poin
to the parameter. You must make a local shReadParam or a
shWriteParam function call to read or write the parameter. There ar
two variations of this type of parameter ownership:

• SHELL_ALONE : In SHELL_ALONE ownership, the Function
Block Shell owns the data, and it responds to remote read and w
requests to parameters with this attribute without your
involvement. In this case, no application-specific validation can
performed before honoring the remote read or write request.

• SHELL_NOTIFY : In SHELL_NOTIFY ownership, the Function
Block Shell owns the data, but it executes the CB_NOTIFY_READ or
CB_NOTIFY_WRITE callback function to seek your permission on
remote requests to read or write the parameter.

Registering Callback Functions
The Function Block Shell uses callback functions to request service
from you. You should specify a set of callback functions for a given
VFD during VFD registration.

If a certain callback is not needed, you must specify the value NUL
For example, if a VFD has no USER_ALONE parameters, the read and
write callback functions are not needed, and you can register the
callback functions as the NULL value. However, if the VFD has
USER_ALONE parameters, you must provide proper read and writ
callback functions to handle the access of the parameters. In this c
a NULL callback function or a callback function that does not hand
data access properly might crash the program.

The Function Block Shell invokes one of these callback functions
depending on the type of service it needs from you. You can call th
© National Instruments Corporation 2-3 NI-FBUS Function Block Shell Reference Manual

Chapter 2 Functional Overview

k
 and

ter
 the

e
as
s

rs

s
the
r to
.

rs

s
e

ata

nly
Function Block Shell from within the callback functions. The callbac
function categories are parameter access, function block execution,
alert notification.

Callbacks for Parameter Access
You can register four callback functions to control remote FMS
Read/Write access to function block, transducer block, or resource
block parameters. The callback functions have the following
parameters: the handle of the block to which the accessed parame
belongs, the offset of the accessed parameter within the block, and
subindex of the parameter. The subindex is only meaningful if the
parameter is a record or an array; the subindex can be ignored if th
parameter is a simple variable. In addition, each callback function h
other function-specific parameters and defines a set of return value
expected by the Function Block Shell.

• CB_READ: This callback function is called when the Function
Block Shell receives a remote FMS Read request for paramete
with the ownership type USER_ALONE. Depending on the return
value of the callback function, the Function Block Shell respond
positively or negatively to the read request. You can construct
FMS user data packet, or give the Function Block Shell a pointe
the data so it can form the FMS user data portion of the packet

• CB_WRITE : This callback function is called when the Function
Block Shell receives a remote FMS Write request for paramete
with the ownership type USER_ALONE. Depending on the return
value of the callback function, the Function Block Shell respond
positively or negatively to the write request. You can decode th
FMS user data and modify the parameter, or give the Function
Block Shell a pointer to the data so it can decode the FMS user d
and modify the parameter.

• CB_NOTIFY_WRITE : This callback function is called when the
Function Block Shell receives a remote FMS Write request for
parameters with ownership type SHELL_NOTIFY or
USER_PTR. Depending on the return value of the callback
function, the Function Block Shell responds positively or
negatively to the write request. The parameter value is updated o
on a positive response.

• CB_NOTIFY_READ : This callback function is called when the
Function Block Shell receives a remote FMS Read request for
parameters with ownership type SHELL_NOTIFY or
USER_PTR. Depending on the return value of the callback
NI-FBUS Function Block Shell Reference Manual 2-4 © National Instruments Corporation

Chapter 2 Functional Overview

k
k

rn
on
n

s.
function, the Function Block Shell responds positively or
negatively to the read request.

Callback for Function Block Execution
A callback function, CB_EXEC, must be registered within each VFD
for executing function blocks. The System Management schedule
determines when a function block in the VFD must be executed, at
which time the Function Block Shell invokes this callback function.
The Function Block Shell gives the handle or descriptor of the bloc
to be executed to the callback function. Before invoking the callbac
function, the Function Block Shell snaps all the input, or subscribed
parameters of the function block. To the Function Block Shell, a retu
from the callback function means the end of execution of the functi
block. After the end of execution of the Function Block, the Functio
Block Shell snaps the output, or published parameters, and updates the
relevant trend objects.

Callbacks for Alert Notification
Two callback functions can be registered to handle alert notification
CB_ACK_EVENTNOTIFY informs you of a successful notification and
the receipt of a confirmation, or it informs you of an unsuccessful
notification. CB_ALARM_ACK informs you of the receipt of an
acknowledgment from the remote machine.
© National Instruments Corporation 2-5 NI-FBUS Function Block Shell Reference Manual

© National Instruments Corporation 3-1 NI-FBUS Function B
Chapter

3
Registration Functions
.

al
This chapter describes the registration process and the associated functions.

Registration Process
The registration process has several steps, as follows:

1. Construct an ASCII file of a defined format, called the device template, to describe
the application.

2. Use the device code-generator utility to convert the device template to a C file

3. Link and compile the C file with other modules of the application.

4. Call the registration functions in userstart .

Constructing the Device Template
The format of the device template is described in this section. See your NI-FBUS
Function Block Shell distribution disk for a sample template file.

File Format
The template file contains several sections, each with a keyword followed by sever
lines of description. The sections should be in the following order:

VFD

USER_TYPE

BLOCKS

TRENDS

VARLISTS

As in the C++ language, the double slash (“//”) is used for comments.
lock Shell Reference Manual

Chapter 3 Registration Functions

ed

d for
n

 data
based

hell.
VFD
The keyword VFD should be followed by thirteen lines, as follows:

vendor name
model name
revision
profile number 1, profile number 2
number of user defined types
number of transducer blocks
number of function blocks
number of maximum linkage objects
number of maximum alert objects
number of maximum trend float objects
number of maximum trend discrete objects
number of maximum trend bitstring objects
number of maximum variable lists

User Types
Do not use the keyword USER_TYPE if the number of user-defined types is zero.
Otherwise, descriptions of user-defined types should be provided after the keyword
USER_TYPE, and the number of descriptions should match the number of user-defin
types specified in the VFD section.

Each user type description has the following format:

number of entries (i.e., n)
typeindex, size, offset
... (total of n lines)
typeindex, size, offset

For each entry (subfield) of the user-defined type, the index of its type, typeindex , must
be provided. See Table 3-1 for a list of type indices. The size should also be provide
the string type (octet string, visible string, and bit string). For types with a well-know
size, provide a size of 0.

The offset of an entry in a data type is the offset of that entry in the C structure of the
type. The Function Block Shell must know the addresses of the structure members
on the address of the structure itself in order to process the read and write callback
functions. Therefore, the offsets of members must be given to the Function Block S
NI-FBUS Function Block Shell Reference Manual 3-2 © National Instruments Corporation

Chapter 3 Registration Functions

ould

fined

-array
ard
Blocks
The number of blocks (resource blocks, transducer blocks, and function blocks) sh
match the number specified in the VFD section, and the block descriptions should be in
this order: first RESOURCE, then TRANSDUCER, then FUNCTION blocks.

Each block description starts with the keyword BLOCK, followed by descriptions of the
block and each parameter of the block.

The description of the block consists of the following lines:

block tag
block type (RESOURCE, TRANSDUCER, or FUNCTION)

DD name, DD item, DD revision
profile and profile revision, execution time, execution period,
next FB
number of parameters

If the block tag is BLANK_TAG, the tag of the block is blank.

Each parameter must have one line of description. For the standard parameters de
in the Fieldbus Specification, the format of the description is as follows:

DD name, DD item, standard parameter name, owner

If you have a device description, you may put zero for the DD name and DD item fields.
See the Using the Code Generation Utility section later in this chapter for more
information.

For non-standard parameters, provide the data type and usage information. For non
parameters of some types, the initial value is required. The format of the non-stand
parameter description is as follows:

DD name, DD item, data meta type, data type, usage, storage, owner,
initial value

or:

DD name, DD item, data meta type, data type, (# of elements for meta
Type

where data meta type can be SIMPLE, RECORD, or ARRAY. data type , usage ,
storage , owner , and initial value are described in the following sections.
© National Instruments Corporation 3-3 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions

s.
Data Type
Data types are types standardized in Fieldbus Specifications and user-defined type
Table 3-1 lists the standard types used in the template registration.

Table 3-1. Data Type Names Used in Template Registration

Index Name Need Initial Value?

1 Boolean Yes

2 Int8 Yes

3 Int16 Yes

4 Int32 Yes

5 uint8 Yes

6 uint16 Yes

7 uint32 Yes

8 Float Yes

9 Visible Str No

10 Octet Str No

11 Date No

12 Time Of Day No

13 Time Diff No

14 Bit String No

21 Time Value No

32 Block No

33 VS Float No

34 VS Discrete No

35 VS BitString No

36 Scaling Struct No

37 Mode Struct No

38 Access Perm No

39 Alarm Float No

40 Alarm Discrete No

41 Event Update No
NI-FBUS Function Block Shell Reference Manual 3-4 © National Instruments Corporation

Chapter 3 Registration Functions

For user-defined types, the type name for the nth type you define in the device template
is as follows:

USER_TYPEn

where all data type names are case-sensitive.

Usage
A parameter can be contained, input, or output:

C contained
IN input
OUT output

Storage
The storage of a parameter can be dynamic, nonvolatile, or static:

D dynamic
N nonvolatile
S static

42 Alarm Summary No

43 Alert Analog No

44 Alert Discrete No

45 Alert Update No

46 Trend Float No

47 Trend Discrete No

48 Trend BitString No

49 Linkage No

50 Simulate Float No

51 Simulate Discrete No

52 Simulate BitString No

53 Test No

54 Action No

Table 3-1. Data Type Names Used in Template Registration (Continued)

Index Name Need Initial Value?
© National Instruments Corporation 3-5 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions

e

s

ta,
a

me
d bit

Owner
This attribute tells the Function Block Shell the ownership of the parameter. See th
Application Program Structure section in Chapter 2, Functional Overview, for an
explanation of parameter ownership.

USER_ALONE You, the user, own the data.

USER_PTR You own the data, and the Function Block Shell keep
the pointer.

SHELL_ALONE The Function Block Shell owns the data.

SHELL_NOTIFY The Function Block Shell owns the data, and
whenever the network asks to read or modify the da
the Function Block Shell asks your permission with
callback function.

Initial Value
Supply initial values for integer and float parameters. +INF and -INF are for positive and
negative infinite values.

Trends
There are three types of trends: float, discrete and bit string. They all follow the sa
format in the template, and they should be present in the order of float, discrete, an
string after the keyword TRENDS.

The format of a float trend description is as follows:

number of float trends(i.e., n)
block number, parameter offset, sample type, sample interval
... (total of n lines)
block number, parameter offset, sample type, sample interval

If there is no trend float, the number of float trends should be zero.

The discrete trend and bit string trend have exactly same format as above.

There are two sample types: INSTANT and AVERAGE. The definition of these sample types
can be found in the Fieldbus Foundation Specification.
NI-FBUS Function Block Shell Reference Manual 3-6 © National Instruments Corporation

Chapter 3 Registration Functions

e

ired

ou
e
s
Variable Lists
Following the keyword VARLISTS is the number of variable lists to be defined. Each
variable list is defined in the following format:

VARLIST

block number, view type, variable list name
number of variables (i.e., n)
parameter offset
... (total of n lines)
parameter offset

The block number is the number of the block to which this variable list belongs. Th
view type can be view1 , view2 , view3 , or view4 .

When you define variable lists in the template, remember the following:

• Each block can have only one view1 and one view2 , but may have multiples of
view3 and view4 .

• View lists of a block must be defined contiguously, and must be in the order view1 ,
view2 , view3 , and view4 .

Using the Code Generation Utility
The device code generation utility codegen.exe is an MS-DOS program. It is distributed
as part of the National Instruments Fieldbus Device Interface Kit. It takes two requ
command line arguments and an optional third argument, as follows:

codegen input output [symbol_file]

where input is the file name of device template, and output is the generated C file.
symbol_file is the name of the symbol file generated by the DD tokenizer when y
tokenize your Device Description. If you are using standard blocks, you may use th
nifb.sym file provided in the Fieldbus Device Interface Kit. The symbol file contain
the name of the function block parameters and their DD names and DD items in a certain
format. When you use this optional third argument for codegen , codegen searches for
parameter names in the symbol file. If a parameter name is found, the DD name and DD

item of the parameter in the symbol file are used in the output file. Otherwise, the DD

name and DD item in the template file are used.
© National Instruments Corporation 3-7 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions
Calling Registration Functions
Call the shRegisCallback function in userStart to register the callback functions.
You must also call shRegisParamPtr if you have any parameters of USER_PTR
ownership.

Registration Functions
shRegisCallback Register callback functions.

shRegisParamPtr Register pointers of parameters with USER_PTR
ownership.

shStartExecLoop Start periodic execution of a function.
NI-FBUS Function Block Shell Reference Manual 3-8 © National Instruments Corporation

Chapter 3 Registration Functions
shRegisCallback

Purpose
Register callback functions of a VFD with the Function Block Shell.

Format
RETCODE shRegisCallback(

HDL_VFD hVfd,

CB_READ *cbRead,

CB_WRITE *cbWrite,

CB_NOTIFY_READ *cbNotifyRead,

CB_NOTIFY_WRITE *cbNotifyWrite,

CB_EXEC *cbExec,

CB_ACK_EVENTNOTIFY *cbAckEventNotify,

CB_ALARM_ACK *cbAlarmAck,

void *reservedForFuture)

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handler.
IN cbRead Callback function for read.
IN cbWrite Callback function for write.
IN cbNotifyRead Callback function for read notify.
IN cbNotifyWrite Callback function for write notify.
IN cbExec Callback function for block execution.
IN cbAckEventNotify Callback function for acknowledgments of event

notify.
IN cbAlarmAck Callback function for acknowledgment of alarm
IN reservedForFuture Reserved for future use. Pass a NULL for this

parameter.

Return Values
retcode
© National Instruments Corporation 3-9 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions

ck
e

d and

ss the

,
shRegisCallback
Continued

Description
shRegisCallback is used to register callback functions of a VFD to the Function Blo
Shell. After shRegisCallback is called, the Function Block Shell is able to invoke thes
callback functions for various purposes, such as to create a block algorithm or to rea
write parameters.

The pointers to the various callback routines detailed in Chapter 4, Callback Functions,
are passed as input parameters. If a certain callback is not supported, you must pa
value NULL.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is not valid.
E_CB_RW_NULL Read or write callback functions should not be NULL

because there are parameters with USER_ALONE
ownership.

E_CB_R_NOTIFY_NULL Read notify callback function should not be NULL,
because there are parameters with SHELL_NOTIFY
or USER_PTR ownership.

E_CB_W_NOTIFY_NULL Write notify callback function should not be NULL,
because there are parameters with SHELL_NOTIFY
or USER_PTR ownership.
NI-FBUS Function Block Shell Reference Manual 3-10 © National Instruments Corporation

Chapter 3 Registration Functions

g.
g.

egal
shRegisParamPtr

Purpose
Register pointers of parameters with USER_PTR ownership.

Format
RETCODE shRegisParamPtr(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 numParam,

PARAM_PTR paramPtr[]);

Includes
#include "fbsh.h"

Parameters
IN hVfd Handle of the VFD to which these parameters belon
IN hBlock Handle of the block to which these parameters belon
IN numParam Number of parameters with USER_PTR ownership in

this block.
IN paramPtr Offset and pointers of the parameters. This array

should have the length numParam.

typedef struct PARAM_PTR{

uint16 offset;

void *ptr;

}PARAM_PTR;

Return Values
retcode

Description
shRegisParamPtr is used to register the pointers of parameters with ownership
USER_PTR on a per block basis. For example, if there are n function blocks in the
application, and each of them has parameters with USER_PTR ownership, then this
function is used n times.

The memory location of parameters with USER_PTR ownership should not change in the
entire application. Otherwise, the Function Block Shell might read and write to an ill
© National Instruments Corporation 3-11 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions

reed.

 be
e

er
shRegisParamPtr
Continued

memory location and crash the application. The data of the parameters with USER_PTR
ownership must be stored as global variables or in allocated memory that is never f

The dynamic registration of parameter pointers is not supported. This function can
called only before the shInitShell function is called. It cannot be called in any of th
callback functions.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
E_NUM_PARAM_MISMATCH The number of parameters is not equal to the numb

of parameters with USER_PTR ownership in this
block.

E_INVALID_PARAM_OFFSET There is an invalid parameter offset in paramPtr .
E_PARAM_TYPE_MISMATCH There is a parameter with ownership that is not

USER_PTR in paramPtr .
NI-FBUS Function Block Shell Reference Manual 3-12 © National Instruments Corporation

Chapter 3 Registration Functions

ucer
eed
 the

 at
 of

so,

es.
shStartExecLoop

Purpose
Start a function that executes periodically.

Format
RETCODE shStartExecLoop(

LOOP_EXEC func,

uint16 period);

Includes
#include "fbsh.h"

Parameters
IN func A function to be executed periodically.
IN period The length of the period in milliseconds.

Return Values
retcode

Description
Some applications need to run certain functions periodically. For example, a transd
block might need to have an algorithm that runs periodically, or a simulation might n
to generate a random number periodically. Because these functions are not part of
function block, they cannot be invoked by the cbExec function. The shStartExecLoop
function provides a mechanism for such functionality. It calls the specified function
the specified rate. After this function is called, there is no way to stop the execution
the specified function.

Note: If a function runs too frequently, it might consume too much processor
time. Therefore, a minimum period of 20 ms is enforced. If you call the
function with a period of less than 20 ms, 20 ms is used as the period. Al
the periodic function should generally run very fast. A slow periodic
function with a small period will affect the schedule of the function block
execution, possibly causing stale data in communication between devic

The shStartExecLoop function can be called no more than five times.
© National Instruments Corporation 3-13 NI-FBUS Function Block Shell Reference Manual

Chapter 3 Registration Functions
shStartExecLoop
Continued

Possible Errors
E_NO_MEMORY There is not enough memory to start the function.
NI-FBUS Function Block Shell Reference Manual 3-14 © National Instruments Corporation

© National Instruments Corporation 4-1 NI-FBUS Function B
Chapter

4
Callback Functions
d

e

This chapter describes the callback functions of the Function Block Shell.

Callback Functions
CB_EXEC Function Block execution callback function.

CB_NOTIFY_READ The Function Block Shell obtains permission to rea
parameters with ownership type SHELL_NOTIFY or
USER_PTR.

CB_NOTIFY_WRITE The Function Block Shell obtains permission to writ
parameters with ownership type SHELL_NOTIFY or
USER_PTR.

CB_READ Read USER_ALONE parameters when responding to
a remote read request.

CB_WRITE Write to USER_ALONE parameters when
responding to a remote write request.

The alarm-related callback functions CB_ALARM_ACK and CB_ACK_EVENTNOTIFY are
described in Chapter 6, Alarm Functions.
lock Shell Reference Manual

Chapter 4 Callback Functions

ll sets
ED,
an
r NO

ues
ers in

f this

 has
rns

ould
CB_EXEC

Purpose
The callback function for function block execution.

Definition
typedef void

(CB_EXEC(HDL_BLOCK hBlock));

Parameters
IN hBlock Block handle.

Return Values
retcode

Description
This function is called when a function block is scheduled to run. Before calling this
function, the Function Block Shell updates the status and value of all the input
parameters. If there is no connection to an input parameter, the Function Block She
the quality of the status of this parameter to BAD, the sub-status to NOT CONNECT
and the limit to NOT LIMITED. If no updated value is received from the network for
input parameter, then the quality of the status is set to BAD, the sub-status to eithe
COMMUNICATION WITH LAST USABLE VALUE or NO COMMUNICATION
WITH NO USABLE VALUE, and the limit is set to NOT LIMITED. Otherwise, the
status is what is received from the network connection for that input.

After calling this function, the Function Block Shell sends the output parameter val
for this block to the Fieldbus, and then updates the trends if there are any paramet
this block that need trends.

While this function is executing, remote read and write requests of the parameters o
function block are not permitted. Therefore, the integrity of the data throughout the
function block execution period is guaranteed.

To the Function Block Shell, the return of this function means that the function block
finished executing. Therefore, it is your responsibility to ensure that this function retu
within the maximum execution time that you specified for it in the function block
registration.

You should examine the alarm conditions in this function. If an alarm occurs, you sh
call the shAlertNotify function, so the Function Block Shell can report the alarm.
NI-FBUS Function Block Shell Reference Manual 4-2 © National Instruments Corporation

Chapter 4 Callback Functions

s

t

ock
t.
CB_NOTIFY_READ

Purpose
Obtains the user’s permission to read parameters with ownership type SHELL_NOTIFY
or USER_PTR.

Definition
typedef RETCODE

(CB_NOTIFY_READ(HDL_BLOCK hBlock,

uint16 offset,

uint16 subindex,

Bool_t byShell));

Parameters
IN hBlock Block handle.
IN offset Offset of the parameter in the block. (The first

parameter is offset 1.)
IN subindex 1-relative subindex within the parameter (for record

or arrays).
IN byShell Reason for the Function Block Shell to call this

function.

Return Values
retcode

Description
When responding to a remote read request of a parameter with ownership type
SHELL_NOTIFY or USER_PTR, the Function Block Shell invokes this function to ge
your permission to read the data. You should return R_SUCCESS if the request is allowed,
and the FB service error reason code otherwise. In the latter case, the Function Bl
Shell returns a negative response, with the reason code, to the remote read reques
© National Instruments Corporation 4-3 NI-FBUS Function Block Shell Reference Manual

Chapter 4 Callback Functions

s

.

t
 be

rite
e, the
ting
CB_NOTIFY_WRITE

Purpose
Obtain the user’s permission to write parameters with ownership of types
SHELL_NOTIFY or USER_PTR.

Definition
typedef RETCODE

(CB_NOTIFY_WRITE(HDL_BLOCK hBlock,

uint16 offset,

uint16 subindex,

bool_t byShell,

void *data));

Parameters
IN hBlock Block handle.
IN offset Offset of the parameter in the block. (The first

parameter is offset 1.)
IN subindex 1-relative subindex within the parameter (for record

or arrays).
IN byShell Reason for Function Block Shell to call this function
IN data New data for the parameter.

Return Values
retcode

Description
When responding to a remote write request of a parameter with ownership type
SHELL_NOTIFY or USER_PTR, the Function Block Shell invokes this function to ge
your permission to modify the data. You can check to see if the new data is valid to
written to the parameter. You should return R_SUCCESS if the request is allowed. In this
case, the Function Block Shell updates the parameter to the new value in data . You can
also return R_USER_DONE if you prefer to update the data for USER_PTR parameters
yourself. In this case, the Function Block Shell responds positively to the remote w
request without updating the parameter. If you return an FB service error reason cod
Function Block Shell responds negatively to the remote write request without upda
the parameter.
NI-FBUS Function Block Shell Reference Manual 4-4 © National Instruments Corporation

Chapter 4 Callback Functions

d

ex is
ction

hen
allback
CB_READ

Purpose
Function Block Shell reads USER_ALONE parameters when responding to remote rea
requests.

Definition
typedef RET CODE

(CB_READ(HDL_BLOCK hBlock,

uint16 offset,

uint16 subindex,

bool_t byShell,

void* buf,

uint8* bufLen,

void** paramPtr));

Parameters
IN hBlock Block handle.
IN offset Offset of the parameter in the block.
IN subindex Subindex within the parameter.
IN byShell Reason for the Function Block Shell to call this

function.
IN buf Data buffer to be filled.
IN/OUT bufLen Length of the data buffer.
OUT paramPtr Pointer to the parameter data.

Return Values
retcode

Description
The Function Block Shell calls this function to read USER_ALONE parameters. The
block handle and offset identify the parameter or one of its members. If the subind
zero, the Function Block Shell is reading the whole parameter. Otherwise, the Fun
Block Shell is reading the member of the parameter specified in the subindex. The
Function Block Shell checks the validity of the block handle, offset, and subindex w
a network read request comes, so you do not need to check these parameters in a c
function. This also applies to the callback functions CB_NOTIFY_READ, CB_WRITE, and
CB_NOTIFY_WRITE.
© National Instruments Corporation 4-5 NI-FBUS Function Block Shell Reference Manual

Chapter 4 Callback Functions

ell
, the

d
e.
o
 Shell

tion

t

at.
ou
 the

ith
CB_READ
Continued

The Function Block Shell needs to access parameters for two reasons:

• To service read or write requests from the network.

• To access the parameters for internal use. For example, the Function Block Sh
updates the input parameters of a block before the block begins executing. Also
Function Block Shell needs to read parameters such as ALERT_KEY to create an
alert during the shAlertNotify() function.

The byShell parameter specifies whether the Function Block Shell is calling your
callback for internal reasons (byShell = TRUE) or to service Fieldbus network read an
write requests (byShell = FALSE). You might give different permissions in each cas
National Instruments recommends that you always allow the Function Block Shell t
access the parameters for its internal use, because if you do not, the Function Block
might not operate properly.

The byShell parameter is also present in the callback functions CB_NOTIFY_READ,
CB_WRITE, and CB_NOTIFY_WRITE, and has the same meaning as in CB_READ. For
example, the Function Block Shell calls the CB_WRITE function to modify the input
parameter before function block execution. Therefore, the byShell parameter would be
TRUE. In this case, you should grant the permission to perform the write. The Func
Block Shell might also call the CB_WRITE function to modify an input parameter upon
receiving a network write request. byShell would be FALSE in this case, and you migh
want to refuse this type of request for your own reasons.

When using this function, you have three options:

• You encode data in FMS format, store it in buf , set the bufLen , and then return
R_SUCCESS. In this case, the Function Block Shell assumes that buf points to the
buffer containing the correct data.

• Instead of encoding the data, you pass a pointer to the parameter in paramPtr , and
return R_DELEGATE. The Function Block Shell then encodes the data to FMS form
If the parameter is a record or array, even if a read request is on a subindex, y
should still pass the pointer to the whole record or array instead of the pointer to
element of the record or array. The Function Block Shell handles locating the
element.

• Return the FB service error reason code for refusing service if reading is not
permitted. In this case, the Function Block Shell returns a negative response, w
the reason code, to the remote read request instead of encoding the data. The
NI-FBUS Function Block Shell Reference Manual 4-6 © National Instruments Corporation

Chapter 4 Callback Functions

des
ork
CB_READ
Continued

reason codes are E_PARAM_CHECK, E_EXCEED_LIM, E_WRONG_MODE,
E_WRITE_PROHIBITED, and E_DATA_NOT_WRITABLE. See the Function Block
Application Process, Part 1 for the meaning of these reason codes. These co
will be returned to the requesting device across the Fieldbus if this was a netw
request.
© National Instruments Corporation 4-7 NI-FBUS Function Block Shell Reference Manual

Chapter 4 Callback Functions

r

meter
CB_WRITE

Purpose
Function Block Shell writes to USER_ALONE parameters.

Definition
typedef RETCODE
(CB_WRITE(HDL_BLOCK hBlock,

uint16 offset,
uint16 subindex,
bool_t byShell,
void* data,
void** paramPtr);

Parameters
IN hBlock Block handle.
IN offset Offset of the parameter in the block (First paramete

starts at 1).
IN subindex Subindex within the parameter (for records and

arrays).
IN byShell Reason for the Function Block Shell to call this

function.
IN data New data for the parameter.
OUT paramPtr Pointer to the parameter data.

Return Values
retcode

Description
The Function Block Shell calls this function to modify the parameter you own. data
points to new data. The data type of the new data depends on the data type of the
parameter and the subindex parameter. For example, if the write request is on a para
of type FF_VsFloat , which is a record, data points to a record of FF_VsFloat if the
subindex is 0, or to a float if the subindex is 2.

When using this function, you have three options:

• Modify the parameter with the new data, and then return R_SUCCESS.
NI-FBUS Function Block Shell Reference Manual 4-8 © National Instruments Corporation

Chapter 4 Callback Functions

dex,
ord

e to

 of a

oint
d

mote
CB_WRITE
Continued

• Instead of copying the data, pass the pointer to the parameter in paramPtr and return
R_DELEGATE. The Function Block Shell then modifies the parameter. Just as in
CB_READ, even if the parameter is a record or array and the request is on a subin
the pointer you pass to the Function Block Shell should still point to the whole rec
or array, and not to a specific element of a record or an array.

If the Function Block Shell is passing the user a record or array element, the data
parameter points to the actual member, not to the entire record or array. However,
when you pass the Function Block Shell a pointer, the pointer should always b
the entire record or array.

For example, suppose a device on the Fieldbus requests a write to subindex 2
Function Block Shell-owned parameter of type FF_VsFloat (which is a record). The
buf parameter that the Function Block Shell passes in would point to a floating p
number instead of to the FF_VsFloat record. However, if you own a parameter, an
you want the Function Block Shell to copy the data, you should return R_DELEGATE
and a pointer to the entire FF_VsFloat data structure.

• Return the FB service error reason code to reject the service. In this case, the
Function Block Shell returns a negative response, with the reason code, to the re
write request instead of decoding the data.

• You can modify the contents of data , then return R_DELEGATE to allow the write to
succeed with data that you supplied. You must also supply the pointer to the
parameter in the paramPtr argument in this case.
© National Instruments Corporation 4-9 NI-FBUS Function Block Shell Reference Manual

© National Instruments Corporation 5-1 NI-FBUS Function B
Chapter

5
Utility Functions

This chapter describes the utility functions of the Function Block Shell.

Utility Functions
shGetTime Get the application time.

shSignalBlockSem Release the semaphore of a function block.

shReadParam Read a shell-owned parameter or object.

shWaitBlockSem Acquire the semaphore of a function block.

shWriteParam Write a shell-owned parameter or object.

shWriteNVM Save the non-volatile parameters whose ownership
is USER_ALONE and USER_PTR in non-volatile
memory.
lock Shell Reference Manual

Chapter 5 Utility Functions

ent.
ary 1,

vice
 not
ven if

 long
shGetTime

Purpose
Get the application time maintained by the System Management of the Stack.

Format
FF_Time

shGetTime();

Includes
#include "fbsh.h"

Return
FF_Time

typedef struct FF_TIME{

uint32 upper;

uint32 lower;

}FF_Time;

Description
You can use this function to get the application time maintained by System Managem
The application time is the number of 1/32 ms periods that have passed since Janu
1972.

The application time on a Fieldbus device comes from the Time Master that the de
connects to. If the time in the Time Master is not set correctly, the application time is
the number of 1/32 ms periods that have passed since January 1, 1972. However, e
the Time Master is not set correctly, you can still use this function to measure time
elapsed in your application. For example, you can use this function to measure how
a function block execution takes.
NI-FBUS Function Block Shell Reference Manual 5-2 © National Instruments Corporation

Chapter 5 Utility Functions

 and
lock

d
shSignalBlockSem

Purpose
Release the semaphore of a function block.

Format
RETCODE

shSignalBlockSem(

HDL_VFD hVfd,

HDL_BLOCK hBlock);

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handle.
IN hBlock Block handle.

Return Values
retcode

Description
This function is used to release the semaphore of a function block. The VFD handle
block handle together identify the block. To ensure that the user and the Function B
Shell do not access a parameter at the same time, shWaitBlockSem must be used before
accessing any parameters with USER_PTR ownership to ensure mutual exclusion, an
shSignalBlockSem must be called after accessing those parameters to allow the
Function Block Shell to access the parameters.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
© National Instruments Corporation 5-3 NI-FBUS Function Block Shell Reference Manual

Chapter 5 Utility Functions

f

e
.
k

e

ction
If the
e
shReadParam

Purpose
Enables you to read parameter data owned by the Function Block Shell.

Format
RETCODE

shReadParam(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 offset,

uint16 subindex,

void *data,

uint16 datalen);

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handle.
IN hBlock Block handle. Valid range is one to the number o

blocks in the VFD.
IN offset Offset of the parameter in the block. Valid rang

is zero to the number of parameters in the block
When the offset is zero, you are reading the bloc
itself.

IN subindex Subindex within the parameter. Valid range is on
to the number of members in the parameter, or
zero (see Description).

IN data Data buffer to be filled.
IN dataLen Length of the data buffer.

Return Values
retcode

Description
When the Function Block Shell owns the data of the parameter, you can call this fun
to read the data. The VFD handle, block handle, and offset identify the parameter.
subindex is 0, you are reading the whole parameter. Otherwise, you are reading th
member of the parameter specified by the subindex.
NI-FBUS Function Block Shell Reference Manual 5-4 © National Instruments Corporation

Chapter 5 Utility Functions

t to

n

k

.

shReadParam
Continued

You should know the data type of the parameter or parameter component you wan
access. data should be a pointer to that data type, and dataLen should be the size.
dataLen is used mainly to ensure you have allocated enough space for the Functio
Block Shell to write.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
E_INVALID_OFFSET The parameter offset is invalid.
E_USER_DATA The data is owned by you, not the Function Bloc

Shell.
E_INVALID_SUBINDEX The subindex is out of range for this parameter
E_BUFFER_TOO_SMALL The buffer is too small to write the data of this

parameter.
© National Instruments Corporation 5-5 NI-FBUS Function Block Shell Reference Manual

Chapter 5 Utility Functions

e is

and
the
shWaitBlockSem

Purpose
Acquire the semaphore of a function block.

Format
RETCODE

shWaitBlockSem(

HDL_VFD hVfd,

HDL_BLOCK hBlock);

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handle.
IN hBlock Block handle.

Return Values
retcode

Description
This function is used to acquire the semaphore of a function block. One semaphor
created for each function block in the Function Block Shell. For a parameter with
USER_PTR ownership, the Function Block Shell keeps the pointer to a parameter,
may access it any time on a remote read or write request. To ensure that you and
Function Block Shell do not access the parameter at the same time, shWaitBlockSem
must be used before accessing any parameters with USER_PTR ownership to ensure
mutual exclusion.

The VFD handle and block handle together identify the block.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
NI-FBUS Function Block Shell Reference Manual 5-6 © National Instruments Corporation

Chapter 5 Utility Functions

f

e
.
k

k

e

ction
r. If
g the
shWriteParam

Purpose
Write to parameter data owned by the Function Block Shell.

Format
RETCODE

shWriteParam(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 offset,

uint16 subindex,

void *data,

uint16 datalen);

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handle.
IN hBlock Block handle. Valid range is one to the number o

blocks in the VFD.
IN offset Offset of the parameter in the block. Valid rang

is zero to the number of parameters in the block
When the offset is zero, you are reading the bloc
object itself. Only members 8 and 10 of the bloc
object are writable.

IN subindex Subindex within the parameter. Valid range is on
to the number of members in the parameter.

IN data Data to write.
IN dataLen Length of the data buffer.

Return Values
retcode

Description
When the Function Block Shell owns the data of the parameter, you can call this fun
to modify the data. The VFD handle, block handle, and offset identify the paramete
the subindex is 0, you are reading the whole parameter. Otherwise, you are readin
member of the parameter specified by the subindex.
© National Instruments Corporation 5-7 NI-FBUS Function Block Shell Reference Manual

Chapter 5 Utility Functions

t to

k

.

shWriteParam
Continued

You should know the data type of the parameter or parameter component you wan
access. data should be a pointer to that data type, and dataLen should be the size.
dataLen is used mainly to ensure that data points to the correct amount of data.

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
E_INVALID_OFFSET The parameter offset is invalid.
E_USER_DATA The data is owned by you, not the Function Bloc

Shell.
E_INVALID_SUBINDEX The subindex is out of range for this parameter
NI-FBUS Function Block Shell Reference Manual 5-8 © National Instruments Corporation

Chapter 5 Utility Functions

eters
 new

 Shell
use

le
shWriteNVM

Purpose
Save the non-volatile parameters whose ownership is USER_ALONE and USER_PTR,
in non-volatile memory.

Format
RETCODE

shWriteNVM(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 offset,

void *data);

Includes
#include "fbsh.h"

Parameters
IN hVfd VFD handle.
IN hBlock Block handle of the parameter.
IN offset Offset of the trend object to be configured.
IN data Data to write.

Return Values
retcode

Description
This function saves non-volatile parameters that have USER_ALONE and USER_PTR
ownership in non-volatile memory. Every time you change the values of such param
in your function block application program, you need to use this function to store the
value in non-volatile memory.

These parameters can also be changed by a network FMS write. The Function Block
automatically handles the non-volatility in this case. Therefore, you do not need to
shWriteNVM in your write callback function to store these parameters in non-volatile
memory.

hVfd , hBlock , and offset together identify which parameter is to be put in non-volati
memory. data points to the parameter to be stored in non-volatile memory
© National Instruments Corporation 5-9 NI-FBUS Function Block Shell Reference Manual

Chapter 5 Utility Functions

shWriteNVM
Continued

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_INVALID_BLOCK_HANDLE The block handle is invalid.
E_INVALID_OFFSET The offset of the trend object is invalid.
E_SHELL_DATA The Function Block Shell owns the data, so the

data does not have to be stored in non-volatile
memory with this function.
NI-FBUS Function Block Shell Reference Manual 5-10 © National Instruments Corporation

© National Instruments Corporation 6-1 NI-FBUS Function B
Chapter

6
Alarm Functions
This chapter describes the alarm functions of the Function Block Shell.

Alarm Functions
CB_ALARM_ACK The Function Block Shell notifies you of an alarm

acknowledgment.

CB_ACK_EVENTNOTIFY The Function Block Shell notifies you of an alert
object transmission confirmation.

shAlertNotify Create an alert object and wait for the
acknowledgment.

shClearAlert Clear an alert object.
lock Shell Reference Manual

Chapter 6 Alarm Functions

 of

 this

CB_ALARM_ACK

Purpose
Callback function for the Function Block Shell to notify you of the acknowledgment
an alarm.

Definition
typedef RETCODE

(CB_ALARM_ACK(HDL_BLOCK hBlock,

uint16 offset));

Parameters
IN hBlock Block handle.
IN offset Offset of the alarm parameter.

Description
When it receives the acknowledgment of the alarm, the Function Block Shell invokes
callback function to inform you. hBlock and offset identify the alarm parameter, and
the return code indicates the result. In this callback function, you should update the
unAck attribute of the alarm, and return R_SUCCESS afterwards. If the alarm has already
been acknowledged, you should return E_ALARM_ALREADY_ACKED.
NI-FBUS Function Block Shell Reference Manual 6-2 © National Instruments Corporation

Chapter 6 Alarm Functions

n

 no

nt.
CB_ACK_EVENTNOTIFY

Purpose
Callback function for the Function Block Shell to notify you of the confirmation of a
alert object transmission.

Definition
typedef void

(CB_ACK_EVENTNOTIFY(HDL_BLOCK hBlock,

uint16 offset,

RETCODE status));

Parameters
IN hBlock Block handle.
IN offset Offset of the alarm parameter.
IN status Status of the event acknowledgment.

Description
hBlock and offset identify the alarm parameter, and status indicates the result.

This callback function is called by the Function Block Shell in three cases:

• The Function Block Shell fails to send the alert object to the network. If there is
open connection for sending alarms, this function is called with the status
E_NO_OPEN_ALARM_LINK. If there is a communication layer failure, status is
E_COMM_FAILURE.

• The Function Block Shell has sent the alert object MAX_ALT_RESEND_TIMES, and
still no confirmation has been received. The status in this case is
E_ALT_SENT_TIMES_OVERFLOW.

• The Function Block Shell sent the alert object and received the acknowledgme
The status is R_SUCCESS in this case.
© National Instruments Corporation 6-3 NI-FBUS Function Block Shell Reference Manual

Chapter 6 Alarm Functions

m
lid
 the

 the
hen
shAlertNotify

Purpose
Create an alert object to be sent to the network and wait for the acknowledgment.

Format
RETCODE

shAlertNotify(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 offset,

uint8 mfgrType,

uint8 stdType,

uint8 mesgType,

uint8 prio;

uint16 unitIndex)

Includes
#include "fbsh.h"

Parameter
IN hVfd Handle of VFD.
IN hBlock Block handle.
IN offset Offset of the alarm parameter.
IN mfgrType Manufacturer type of the alarm.
IN stdType Standard type of the alarm.
IN mesgType Message type.
IN prio Priority of the alert.
IN unitIndex Unit index of the alarm parameter.

Return Values
RETCODE

Description
You should call this function to notify the shell that your block has detected an alar
condition. In this function, the Function Block Shell finds out if the parameter is a va
alarm parameter first. If it is a valid alarm parameter, the Function Block Shell reads
data of this alarm parameter, creates an alert object, and inserts the alert object in
alert-sending list. The alert objects in the alert-sending list are sent to the network w
there are no time-critical tasks running.
NI-FBUS Function Block Shell Reference Manual 6-4 © National Instruments Corporation

Chapter 6 Alarm Functions
shAlertNotify
Continued

Possible Errors
E_INVALID_VFD_HANDLE The VFD handle is invalid.
E_ALT_FULL All alert objects are in use.
E_INVALID_BLOCK_HANDLE Invalid block handle.
E_INVALID_OFFSET Invalid offset for this block.
E_PARAM_IS_NOT_ALM The parameter is not an alarm parameter.
E_NO_MEMORY Out of memory.
E_CANNOT_GET_ALARM_DATA Failed to read the alarm parameter data.
© National Instruments Corporation 6-5 NI-FBUS Function Block Shell Reference Manual

Chapter 6 Alarm Functions

u no
shClearAlert

Purpose
Clear the alert object associated with the alarm parameter.

Format
RETCODE

shClearAlert(

HDL_VFD hVfd,

HDL_BLOCK hBlock,

uint16 offset);

Includes
#include "fbsh.h"

Parameter
IN hVfd Handle of VFD.
IN hBlock Block handle.
IN offset Offset of the alarm parameter.

Return Values
RETCODE

Description
This function is used to cancel the alert object created by shAlertNotify . When an alert
object is created, it sends alert data several times, and waits for confirmation. If yo
longer need to send out the alert after calling shAlertNotify , you can use this function
to clear the alert object.

Possible Errors
E_INVALID_VFD_HANDLE VFD handle is invalid.
E_INVALID_BLOCK_HANDLE Invalid block handle.
E_INVALID_OFFSET Invalid offset for this block.
E_NO_ALERT No alert object is associated with this alarm.
NI-FBUS Function Block Shell Reference Manual 6-6 © National Instruments Corporation

© National Instruments Corporation 7-1 NI-FBUS Function B
Chapter

7
Miscellaneous Functions
s
This chapter describes miscellaneous functions of the Function Block Shell.

Miscellaneous Functions
shInitShell The Function Block Shell initializes its data structure

and communication layer.

userStart The starting point of user applications.
lock Shell Reference Manual

Chapter 7 Miscellaneous Functions

d

ts

t

on
nk

ation
shInitShell

Purpose
The Function Block Shell initializes its data structures and communication layer.

Definition
RETCODE

shInitShell(bool_t *firstTime)

Includes
#include "fbsh.h"

Return Values
retcode

Description
The Function Block Shell initializes its data structures and communication layer, an
starts the alert-processing tasks before the operation loop.

When the shInitShell function is called for the first time, the Function Block Shell se
firstTime to TRUE. The Function Block Shell saves non-volatile parameters in
non-volatile memory. If the program is restarted, and shInitShell is called again, then
the Function Block Shell sets firstTime to FALSE, and loads the values of non-volatile
parameters from non-volatile memory.

In some cases, this function never returns, because the communication layer is no
initialized. This typically indicates one of the following problems:

• The communication layer is not in the running state. For example, the applicati
program running on the Function Block Shell is not physically connected to a li
master, so the communication layer cannot be started.

• There is a resource shortage, such as low memory. In this case, the communic
layer could not be initialized.

• You should call this function from your userStart routine.

Possible Errors
E_COMM_FAILURE The Function Block Shell fails to initialize the

communication layer.
E_ALT_TASK_FAILURE Alert-processing tasks cannot be started.
NI-FBUS Function Block Shell Reference Manual 7-2 © National Instruments Corporation

Chapter 7 Miscellaneous Functions

re
shInitShell
Continued

E_CANNOT_CREATE_SEM The Function Block Shell cannot create a semapho
for function blocks.

E_NO_MEMORY Out of memory.
E_NVM_FAILURE Cannot initialize non-volatile memory.
© National Instruments Corporation 7-3 NI-FBUS Function Block Shell Reference Manual

Chapter 7 Miscellaneous Functions
userStart

Purpose
The starting point of user applications.

Definition
void userStart()

Description
In your applications, you should use the userStart routine as the starting point of the
application instead of the main routine. The userStart routine, which you must write,
is called only once by the Function Block Shell after the kernel boots up. Your
application must define this function. In this function, you must register callback
functions, initialize the Function Block Shell by calling shInitShell , and initialize the
serial driver. You can also perform application-specific initializations here.
NI-FBUS Function Block Shell Reference Manual 7-4 © National Instruments Corporation

© National Instruments Corporation 8-1 NI-FBUS Function B
Chapter

8
Serial Functions
 be

se.

s

e

nt of

calls.

ric
 to the
This chapter describes serial functions of the Function Block Shell.

Serial Functions
nihOpenDevice Opens and initializes a user-configured device

descriptor.

nihCloseDevice Closes a previously-opened device.

nihDefineSequence Starts the definition of a new command sequence to
sent to the device.

nihSendCommand Sends a command and optionally waits for a respon
Adds a command to a defined sequence.

nihGetData Retrieves the latest reply data to a command that is
part of a sequence.

nihPutData Updates the data associated with a command that i
part of a sequence.

nihCancelSequence Cancels a previously defined sequence.

nihSetParam Configures certain communication parameters for th
network or device.

Overview of Serial Functions
The serial functions provide a general-purpose method of moving data between the
Round Card and a serial device. The serial functions are intended to be independe
the communication protocol used to communicate to the serial device. The serial
functions are also intended to be independent of the Function Block Shell function

Generic Serial
You can transmit data between the Round Card and the serial device using a gene
master/slave command/response serial protocol. Command packets are transmitted
lock Shell Reference Manual

Chapter 8 Serial Functions

ts if
g and

 you
ing

and
and
ver

ence

 been
re
uence

mand

mit

vice

r
serial device and, optionally, the serial device can respond to the command packe
needed. When you use the generic serial protocol, you are responsible for encodin
decoding the entire serial packet for the commands and responses.

Hart Serial
Optionally, the serial functions support the HART protocol across a serial line. When
enable the HART protocol, the serial driver is able to transmit HART commands us
the message format and timing specifics given by the HART Field Communications
Protocol Specification. To send HART commands you need only provide the HART
command number and any associated command data. The response data and the
transmission status returns to you. If the HART command number is a
transmitter-specific HART command, you also need to provide the size of the comm
data and the size of the response data. The serial functions take care of encoding
decoding the entire HART data-link protocol. If a HART command fails, the serial dri
resends the command a configured number of times. If the communication failure
persists, the device is initialized through the HART cmd #0 command. The serial driver
issues the HART initialization command when the device is initialized (through
nihOpenDevice function) and it returns the device identification information to you.

Defining Repeated Command Sequences
The serial functions can be configured to continuously send/receive a defined sequ
of commands. The sequence of commands is defined by the nihDefineSequence and
nihSendCommand functions. The nihDefineSequence function defines the number of
commands in the sequence to send to the device. The nihSendCommand function is then
used to define the commands in the sequence. A command is a serial transaction that
involves a transmit, a receive, or both. When the last command in a sequence has
defined, the sequence sends all defined commands in the order the commands we
defined, and waits for responses on each command that included a receive. The seq
will then run continuously in the background until the nihCancelSequence or
nihCloseDevice function call is made. Functions nihPutData and nihGetData are
provided to update the command data and to retrieve the latest reply data of a com
in a command sequence.

You can call nihPutData to place the current value of some variable data in the trans
buffer to be sent out when the sequence next executed. Similarly, you can call
nihGetData to retrieve the data from a packet that was received from the serial de
on the last time the sequence was executed.

Sequences are free-running; that is, their execution is not tied to the execution of you
Function Block Application. However, the serial functions address synchronization
issues for you; you will not receive any partially updated data buffers when using
nihGetData or nihPutData .
NI-FBUS Function Block Shell Reference Manual 8-2 © National Instruments Corporation

Chapter 8 Serial Functions

d
d.

ely

e

r
call:
nihOpenDevice

Purpose
Open and initialize a user-configured device descriptor.

Format
nihDesc_t nihOpenDevice(nihDesc_t busno, serialAddr_t serialAddr,

hartDeviceInfo *hartDevInfo, uint16 *stat)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN busno The numeric identifier of the serial bus in which this

device is connected. The serial buses are numbere
starting with zero. Currently, only bus 0 is supporte

IN serialAddr For the SERIAL_HART protocol, this is the HART
address of the device. For the SERIAL_GENERIC
protocol, this represents a logical address used sol
by the serial driver, and is not used in any serial
communications.

OUT hartDevInfo The address of the HART device information structur
into which the device identification information is
returned. It is NULL if you are using the
SERIAL_GENERIC protocol.

OUT stat A HART error code is returned detailing the error, if
any. It is NULL if you are using the SERIAL_GENERIC
protocol.

Return Values
A unique identifier used to identify the device or, if the call is unsuccessful, the erro
code. Following is an example of a unique identifier that might be returned by this

struct hartDevInfo {

uint8 manuf ; /* manufacturer’s */

/*identification code */

uint8 devType ; /* mfr’s device type */

uint8 numPreambles ;
© National Instruments Corporation 8-3 NI-FBUS Function Block Shell Reference Manual

Chapter 8 Serial Functions

d

ique

evice.
tion

d.
nihOpenDevice
Continued

uint8 univCmdRev ;

uint8 swRev ;

uint8 hwRev ;

uint8 devFunction ; /* device function flags */

uint32 devID ; /* device id number */

} ;

Description
If you are using the SERIAL_HART protocol, the HART Read Unique Identifier comman
(command #0) is sent to the device at address serialAddr . If a response is received, the
received device identification information is returned in devInfo , and a valid descriptor
to the device is returned. On detection of a communication error, the HART Read Un
Identifier command is automatically sent to the device at address serialAddr .

If you are using the SERIAL_GENERIC protocol, the serial bus at busno is initialized with
the current communication parameters for busno and a valid descriptor to the device is
returned. If you need several descriptors for the SERIAL_GENERIC protocol, you should
supply a different serialAddr to nihOpenDevice .

You must use the descriptor returned by this function for subsequent commands to the d
A set of default communication parameters is associated with busno. If the communica
parameters that you need are different than the default parameters, you must call
nihSetParam to change the needed parameters of the bus before calling nihOpenDevice
to open the device. The descriptor is valid until the device is closed by a nihCloseDevice
call. The serial driver does not allow the device at serialAddr to be opened multiple times.

If an error occurred, a negative error code is returned and the device remains unopene

Possible Errors
E_WRONG_ARGUMENT The busno entered is invalid, or stat is NULL.
E_ALREADY_OPEN The device at address serialAddr is already open.
E_INTERNAL_ERROR Any internal error, such as insufficient resources
E_COMM_ERROR Communication failed.
NI-FBUS Function Block Shell Reference Manual 8-4 © National Instruments Corporation

Chapter 8 Serial Functions
nihCloseDevice

Purpose
Closes a previously-opened device.

Format
int16 nihCloseDevice(nihDesc_t desc)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN desc Descriptor of the device to be closed.

Description
This function terminates all valid command sequences to the device desc .
Communication to or from the device using desc is no longer possible.

Possible Errors
E_WRONG_ARGUMENT The device descriptor is invalid.
© National Instruments Corporation 8-5 NI-FBUS Function Block Shell Reference Manual

Chapter 8 Serial Functions

.
ed.

sed. If
ce is
T
nihDefineSequence

Purpose
Start the definition of a new command sequence to be sent to the device.

Format
nihDesc_t nihDefineSequence(nihDesc_t desc, uint8 numCmds)

Parameters
IN desc A descriptor to an opened device.
IN numCmds The number of commands in this sequence. The

maximum is 255.

Return Values
The identifier of the created sequence.

Description
A new command sequence is defined for the device desc . After numCmds number of
commands are added through the function nihSendCommand , the sequence is executed
The order in which the commands are executed is the order in which they are defin

The sequence is not executed until numCmds number of commands are added. Once
started, the sequence is executed until the sequence is deleted or the device is clo
any of the commands in the sequence is not successfully executed and the sequen
started over. If you are using HART protocol, the device will be initialized with HAR
command #0 before the sequence restarts.

Possible Errors
E_WRONG_ARGUMENT The descriptor is invalid, or numcmds is 0.
E_INTERNAL_ERROR Any internal error, such as insufficient resources.
NI-FBUS Function Block Shell Reference Manual 8-6 © National Instruments Corporation

Chapter 8 Serial Functions

fined

 if

o

e
nihSendCommand

Purpose
Sends a command and optionally waits for a response or adds a command to a de
sequence.

Format
nihDesc_t nihSendCommand(nihDesc_t desc, uint8 cmd,

uint8 *cmdData, uint8 *rcvData,

uint8 cmdDataSize, uint8 rcvDataSize,

uint16 *stat)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN desc The device descriptor of the device to which the

command should be sent or the descriptor of the
sequence to which this command should be added.

IN cmd The HART command number. It is zero if you are
using the SERIAL_GENERIC protocol.

IN cmdData The address of the buffer containing command data
any, or NULL if there is no data.

IN cmdDataSize Specifies the command data size in cmd. It is zero if
you are using SERIAL_HART protocol and cmd is not a
Transmitter-Specific Hart Command.

IN rcvDataSize Specifies the size of the data to be received for cmd. It
is zero if you are using SERIAL_HART protocol and
cmd is not a Transmitter-Specific HART Command.

OUT rcvData The address of the buffer into which data received
from the device is to be read; or NULL if no data is t
be read.

OUT stat The address of buffer to receive the communication
status. It is NULL if you are using the
SERIAL_GENERIC protocol.

Return Values
The descriptor to the command if desc is a command sequence; a negative error cod
otherwise.
© National Instruments Corporation 8-7 NI-FBUS Function Block Shell Reference Manual

Chapter 8 Serial Functions

not
, is

aller

. The
e used

.
rted,
eled
n
e

ion
,
nihSendCommand
Continued

Description

Descriptor Describes a Device
If desc is the descriptor of a device, and the protocol is SERIAL_HART, the command
identified by cmd and the command data cmdData , if any, are sent out the serial bus. If
there is an associated reply, the reply data is returned in rcvData . The caller must ensure
that the buffer is of sufficient length to receive the user data portion of the packet (
the whole packet). The caller is blocked until the entire transaction, with any retries
completed.

If desc is the descriptor of a device, and the device is using the SERIAL_GENERIC
protocol, cmdDataSize bytes from cmdData are sent out the serial port. If there is an
associated reply, the reply data is returned in rcvData . The caller must ensure that the
buffer is of sufficient length to receive the entire packet defined by the caller. The c
is blocked until the entire transaction, with any retries, is completed.

Descriptor Describes a Sequence
If the descriptor describes a sequence, the command cmd and associated data cmdData
are added to the sequence. The command is not sent on the serial link at this time
function returns a descriptor to the command in the sequence. This descriptor can b
in subsequent calls to nihGetData to retrieve response data or to nihPutData to change
the transmitted command. rcvData and stat must be NULL, since these are not needed
If the command stored is the last in the sequence, a new thread of execution is sta
which continues to send the commands in order of definition until the thread is canc
or the device is closed. This thread of execution runs independently of your Functio
Block Application, and is not synchronized with it in any way. If a command fails, th
sequence is restarted. If the protocol is SERIAL_HART and a command fails,
communication is reset with command #0 and the sequence is restarted. The transmiss
of the commands within the new thread occurs as described in the previous section
Descriptor Describes a Device.

Possible Errors
E_WRONG_ARGUMENT The descriptor is invalid or cmd is unknown.
NI-FBUS Function Block Shell Reference Manual 8-8 © National Instruments Corporation

Chapter 8 Serial Functions

d

d

y

ode
nihGetData

Purpose
Retrieves the latest reply data to a command that is part of a sequence.

Format
int16 nihGetData(nihDesc_t desc, uint8 *rcvData, uint16 *stat,

bool_t *stale)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN desc The descriptor of the repetitive command—returned

by nihSendCommand .
OUT rcvData The address of the buffer into which the last receive

reply data must be stored.
OUT stat The address of buffer to receive the communication

status.
OUT stale TRUE if the data returned has already been retrieve

at least once by nihGetData . FALSE otherwise.

Description
The last received reply data and the associated status is returned in rcvData and stat .
You must ensure that the rcvData buffer is of sufficient size to accommodate the repl
data of the command identified by desc . For HART protocol, stat is the HART reply
status. Otherwise, a stat of 0 indicates success, and nonzero indicates an error.

If the last transaction resulted in a communication error, the communication error c
is returned in stat and no data is returned in rcvData .

Possible Errors
E_WRONG_ARGUMENT The descriptor is invalid or rcvData is NULL.
© National Instruments Corporation 8-9 NI-FBUS Function Block Shell Reference Manual

Chapter 8 Serial Functions

ent

e. The
ed

 in

to be
nihPutData

Purpose
Updates the data associated with a command that is part of a sequence.

Format
int16 nihPutData(nihDesc_t desc, uint8 *sendData, uint16 *stat)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN desc The descriptor of the repetitive command—returned

by nihSendCommand .
IN sendData The address of the buffer containing the data to be s

with the command.
OUT stat The address of buffer to receive the communication

status.

Description
This function updates the data associated with a command that is part of a sequenc
new command data sendData is sent to the device the next time the command identifi
by desc is executed. The status of the last transmission of the command desc is returned
in stat .

For generic serial, the entire transmitted string is replaced by sendData when you call
nihPutData . sendData will then be used in all subsequent iterations of the specified
command until you call nihPutData .

For HART serial, the user data portion of the HART packet is replaced by sendData
when you call nihPutData . The rest of the packet remains the same (except the
checksum , which is recalculated for you automatically). The new packet will be used
all subsequent iterations of the specified command until you call nihPutData again.

In both generic serial and HART serial, the number of bytes in the command that is
transmitted remains the same before and after the call to nihPutData .

Possible Errors
E_WRONG_ARGUMENT The descriptor is invalid.
NI-FBUS Function Block Shell Reference Manual 8-10 © National Instruments Corporation

Chapter 8 Serial Functions

d.

ing
nihCancelSequence

Purpose
Cancels a previously defined sequence.

Format
int16 nihCancelSequence(nihDesc_t desc)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN desc Descriptor of the command sequence to be cancele

Description
This function is used to terminate the command sequence desc defined previously. desc
is not valid after this call. The sequence will stop at the end of the currently execut
command.

Possible Errors
E_WRONG_ARGUMENT The sequence descriptor is invalid.
© National Instruments Corporation 8-11 NI-FBUS Function Block Shell Reference Manual

Chapter 8 Serial Functions

ter

ied

nged
nihSetParam

Purpose
Configure certain communication parameters for the network or device.

Format
int16 nihSetParam(nihDesc_t busno, int16 option, int16 value)

Includes
#include "types.h"

#include "hart.h"

Parameters
IN busno The number of the bus whose communication

parameter is to be changed.
IN option A parameter that selects the communication parame

to be changed.
IN value The value to which the selected communication

parameter is to be set.

Description
This function alters the current value of the communication parameter to the specif
value for the selected bus. option must be one of the constants defined in Table 8-1.
value must be valid for the parameter configured. The parameters can only be cha
if there are no opened devices for the bus given by busno .
NI-FBUS Function Block Shell Reference Manual 8-12 © National Instruments Corporation

Chapter 8 Serial Functions

g
nihSetParam
Continued

Option Parameter Constants
RETRY_COUNT The number of times a command is to be

re-transmitted on an error.
NUM_PREAMBLES The number of HART protocol preambles to be

transmitted.
TIME_OUT The amount of time, in ms, to wait before concludin

an error.
SERIAL_PROTOCOL The serial protocol to be used for the bus.
SERIAL_BAUD_RATE The baud rate of the serial bus.
SERIAL_PARITY The parity of the serial bus.
SERIAL_STOP_BITS The number of stop bits for the serial bus.
HART_LONG_FORM Use long-form HART addresses if TRUE (applies

only to SERIAL_HART protocol).

Possible Errors
E_WRONG_ARGUMENT The busno specified is not valid, or the option is

invalid, or the value specified is out of range.
E_BUS_ACTIVE The busno specified already has active device

descriptors opened.

Table 8-1. Constants Available for the Option Parameter

Constant Values Default

RETRY_COUNT 0 to 255 1

NUM_PREAMBLES 3 to 10 3

TIME_OUT 0 to 64 k ms 500 ms

SERIAL_PROTOCOL SERIAL_GENERIC, SERIAL_HART SERIAL_HART

SERIAL_BAUD_RATE BAUD_300, BAUD_1200, BAUD_2400,
BAUD_4800, BAUD_9600,
BAUD_14400, BAUD_19200

BAUD_1200

SERIAL_PARITY ODD_PARITY, EVEN_PARITY,
NO_PARITY

ODD_PARITY

SERIAL_STOP_BITS ONE_STOP, ONE_FIVE_STOP,
TWO_STOP

ONE_STOP

HART_LONG_FORM TRUE, FALSE TRUE
© National Instruments Corporation 8-13 NI-FBUS Function Block Shell Reference Manual

© National Instruments Corporation A-15 NI-FBUS Function
Appendix

A
Customer Communication
ary to

nd the
ur

ms to
vice,
ware
ms
upport

 files
ownload
 to use
u can
For your convenience, this appendix contains forms to help you gather the information necess
help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form a
configuration form, if your manual contains one, about your system configuration to answer yo
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone syste
quickly provide the information you need. Our electronic services include a bulletin board ser
an FTP site, a Fax-on-Demand system, and e-mail support. If you have a hardware or soft
problem, first try the electronic support systems. If the information available on these syste
does not answer your questions, we offer fax and telephone support through our technical s
centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call (512) 795-6990. Yo
access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use your
Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.

Bulletin Board Support

FTP Support
Block Shell Reference Manual

 wide
t

l at the
 we can

cal
t the
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
(512) 418-1111.

You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the techni
support number for your country. If there is no National Instruments office in your country, contac
source from which you purchased your software to obtain support.

Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 01 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678

Fax-on-Demand Support

E-Mail Support (currently U.S. only)

nd use
orm

,

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) ___________________________________

Computer brand ________________ Model ________________ Processor_______________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed ___________________________________

Hard disk capacity _____MB Brand __

Instruments used ___

National Instruments hardware product model __________ Revision ___________________

Configuration ___

National Instruments software product ____________________________ Version _________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

 item.
, and
ore
your

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each
Complete a new copy of this form each time you revise your software or hardware configuration
use this form as a reference for your current configuration. Completing this form accurately bef
contacting National Instruments for technical support helps our applications engineers answer
questions more efficiently.

National Instruments Products
Interrupt level of hardware ___

DMA channels of hardware __

Base I/O address of hardware ___

Other Products
Computer make and model __

Microprocessor __

Clock frequency or speed __

Type of video board installed ___

Operating system version __

Operating system mode ___

Programming language ___

Programming language version ___

Other boards in system __

Base I/O address of other boards __

DMA channels of other boards ___

Interrupt level of other boards __

ducts.

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: NI-FBUS™ Function Block Shell Reference Manual

Edition Date: January 1998

Part Number: 321016C-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ____________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation G-1 NI-FBUS Function
Glossary
ASCII American Standard Code for Information Interchange

DD Device Description

DMA Direct Memory Access

FB Function Block

FMS Fieldbus Messaging Specification

HART HART Field Communications Protocol

Hz Hertz

I/O Input/output

MB Megabytes of memory

OD Object Dictionary

QUU Queued User-triggered Unidirectional

RAM Random-Access Memory

s Seconds

snap Read from the communications stack

VFD Virtual Field Device

Prefix Meanings Value

m- milli- 10-3

M- mega- 106
Block Shell Reference Manual

	NI-FBUS™ Function Block Shell Reference Manual
	Support
	Internet
	Bulletin Board
	Fax-on-Demand
	Telephone (U.S.)
	International Offices
	Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Warning

	Contents
	About This Manual
	How to Use the Manual Set
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Function Block Shell Overview
	Chapter 2 Functional Overview
	Application Program Structure
	Registration
	Ownership of Data
	User-Owned Parameters
	Shell-Owned Parameters

	Registering Callback Functions
	Callbacks for Parameter Access
	Callback for Function Block Execution
	Callbacks for Alert Notification

	Chapter 3 Registration Functions
	Registration Process
	Constructing the Device Template
	File Format
	VFD
	User Types
	Blocks
	Data Type
	Usage
	Storage
	Owner
	Initial Value

	Trends
	Variable Lists

	Using the Code Generation Utility
	Calling Registration Functions
	Registration Functions
	shRegisCallback
	shRegisParamPtr
	shStartExecLoop

	Chapter 4 Callback Functions
	Callback Functions
	CB_EXEC
	CB_NOTIFY_READ
	CB_NOTIFY_WRITE
	CB_READ
	CB_WRITE

	Chapter 5 Utility Functions
	Utility Functions
	shGetTime
	shSignalBlockSem
	shReadParam
	shWaitBlockSem
	shWriteParam
	shWriteNVM

	Chapter 6 Alarm Functions
	Alarm Functions
	CB_ALARM_ACK
	CB_ACK_EVENTNOTIFY
	shAlertNotify
	shClearAlert

	Chapter 7 Miscellaneous Functions
	Miscellaneous Functions
	shInitShell
	userStart

	Chapter 8 Serial Functions
	Serial Functions
	Overview of Serial Functions

	Appendix A Customer Communication
	Glossary
	Tables
	Table 3-1. Data Type Names Used in Template Regist...
	Table 8-1. Constants Available for the Option Para...

